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A B S T R A C T

Recent associations between Major Depressive Disorder (MDD) and measures of premature aging suggest 
accelerated biological aging as a potential biomarker for MDD susceptibility or MDD as a risk factor for age- 
related diseases. Residuals or “gaps” between the predicted biological age and chronological age have been 
used for statistical inference, such as testing whether an increased age gap is associated with a given disease 
state. Recently, a gene expression-based model of biological age showed a higher age gap for individuals with 
MDD compared to healthy controls (HC). In the current study, we propose an approach that simplifies gene 
selection using a least absolute shrinkage and selection operator (LASSO) penalty to construct an expression- 
based Gene Age Gap Estimate (GAGE) model. We train a LASSO gene age model on an RNA-Seq study of 78 
unmedicated individuals with MDD and 79 HC, resulting in a model with 21 genes. The L-GAGE shows higher 
biological aging in MDD participants than HC, but the elevation is not statistically significant. However, when we 
dichotomize chronological age, the interaction between MDD status and age has a significant association with L- 
GAGE. This effect remains statistically significant even after adjusting for chronological age and sex. Using the 21 
age genes, we find a statistically significant elevated biological age in MDD in an independent microarray gene 
expression dataset. We find functional enrichment of infectious disease and SARS-COV pathways using a broader 
feature selection of age related genes.

1. Introduction

Major depressive disorder (MDD) has been hypothesized to show 
characteristics of premature aging (Ford and Savitz 2022). Biological 
aging can be measured in multiple dimensions such as telomere length, 
immunosenescence, brain volume, and gene expression. These measures 
of biological aging are correlated with chronological age, but environ
mental and genetic factors can increase or decrease an individual’s 
biological age relative to their chronological age and influence their risk 
for age related diseases. For example, MDD has been associated with 
markers of cellular and immune aging including shortened leukocyte 
telomere length (Darrow et al., 2016; Ridout et al., 2016), elevated in
dicators of oxidative stress (Ait Tayeb et al., 2023), and elevated 
circulating inflammatory cytokines (Raison et al., 2006). Epigenetic 

clocks predicting biological age based on the accumulation of methyl
ated CpG sites have found higher biological age in MDD participants 
compared with healthy controls (Protsenko et al., 2021). Brain age 
models constructed from T1-weighted magnetic resonance image (MRI) 
data from 2188 healthy controls predicted a gap of + 1.08 years (SE 
0.22) between predicted and chronological age across 2675 depressed 
participants (Han et al., 2021).

A recent RNA-Seq MDD study found that gene expression-based 
biological aging was elevated in MDD participants compared to 
Healthy Controls (HC) (Cole et al., 2021). The PBMC samples included 
four groups: 44 healthy controls and a mixture of MDD participants: 94 
treatment-resistant, 47 treatment-responsive, and 46 untreated (Cole 
et al., 2021). They selected age genes iteratively by varying the P-value 
threshold for the t-test between upper and lower chronological age 
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quartiles. For a given iteration, a biological age was computed for each 
subject based on the signed z-score of the age-related genes, and the 
P-value threshold was chosen to optimize the correlation between bio
logical and chronological age of the participants (Spearman Correlation 
Coefficient (SCC) = 0.72, p < 0.01). A linear model of biological age was 
fit to chronological age and association with MDD was computed by 
comparing the number of MDD and HC participants above and below the 
regression line.

In the current study, we describe a different gene age approach that 
simplifies the gene selection procedure by modeling age from RNA-Seq 
gene expression using a multivariate LASSO penalized regression rather 
than an iterative univariate test. The LASSO approach has the potential 
to capture more variation because it is multivariate, plus it automates 
gene selection by cross-validation of the penalty and it reduces the 
amount of correlation in the selected features. We use age as a quanti
tative variable during the LASSO feature selection in linear regression, 
as opposed to using age quartiles, which is another way for the model to 
include more variation when estimating age. After training the gene age 
model, we dichotomize chronological age when using it as a covariate 
for the association of the gene age gap with MDD.

The current study is outlined as follows. We describe the LASSO 
biological age model trained on an existing RNAseq dataset consisting of 
157 individuals (78 with MDD and 79 healthy controls) (Li et al., 2022). 
The residual is an estimate of the gap between an individual’s chrono
logical age and their biological gene age, which we refer to as the LASSO 
Gene Age Gap Estimate (L-GAGE). We describe the use of L-GAGE for 
testing elevated biological aging in MDD. We find L-GAGE is elevated in 
MDD participants compared to HC, but the elevation is not statistically 
significant. However, when we dichotomize chronological age into older 
and younger, the interaction between MDD status and age is signifi
cantly associated with the L-GAGE residual. We use the top L-GAGE 
genes to train a gene age model in an independent public dataset for 
MDD, and the residual shows a statistically significant increase in MDD 
compared to HC. Finally, we use machine learning feature selection to 
explore biological pathways that are significantly enriched for the gene 

sets identified as being associated with aging.

2. Materials and methods

2.1. Gene expression data

To train our biological age models, we use an extant RNA-Seq dataset 
(Le et al., 2020). The study was approved by the Western Institutional 
Review Board and conducted according to the principles expressed in 
the Declaration of Helsinki. The data consists of 78 MDD and 79 HC 
participants (91 females and 66 males). Individuals with current 
symptoms of depression met DSM-IV-TR criteria for MDD based on the 
Structural Clinical Interview for DSM-IV-TR Axis I Disorders and an 
unstructured psychiatric interview. HC individuals had no personal or 
immediate family history of major psychiatric disorders. MDD partici
pants were unmedicated for at least 3 weeks prior to study entry. 
Exclusion criteria included major medical or neurological illness, psy
chosis, traumatic brain injury, and a history of drug/alcohol abuse 
within 1 year. There is a higher female/male ratio for MDD (51/27) than 
HC (40/39), compatible with trends in the general population. The age 
distribution is slightly skewed towards younger individuals with age 
range from 18 to 55 (Fig. 1). The 8923 genes in the RNA-Seq gene 
expression data are normalized by counts per million reads, which we 
then quantile normalize and log2 transform to stabilize variance. We 
removed genes with a low coefficient of variation (standard deviation 
divided by absolute mean). We chose a threshold of 0.045 to obtain 
5587 genes.

To test the generalizability of the gene age model, we use an inde
pendent microarray study of MDD from the gene expression omnibus 
(GEO) with accession number GSE98793 (Leday et al., 2018). This data 
skews older than the discovery data (ages ~30–70 years) and includes 
MDD with anxiety. We exclude anxiety, resulting in 64 participants with 
MDD and 64 HC.

Fig. 1. Histogram of chronological ages with a bin size of 1: Bars are separated by Healthy Control (HC, red) and major depressive disorder (MDD, blue). There are 
more younger participants in the dataset with the same age, especially from age 20–28. For example, there are 15 participants that are 24 years of age. Chronological 
age is not associated with MDD versus HC (T-test P-value 0.167).
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2.2. Gene age gap estimate (GAGE)

We use LASSO for gene selection and modeling biological age, and 
then we use the residual of this model, which we call LASSO Gene-Age 
Gap Estimate (L-GAGE), for association testing with MDD. For the 
LASSO biological aging model, we build a full penalized regression 
model with all gene expression variables and with chronological age as 
the outcome variable. We include both MDD and HC samples in the age 
model, which was also the approach in Ref. (Cole et al., 2021). Our 
biological age model is based on the non-zero coefficient genes from the 
lambda-1se LASSO penalty (the largest λ for which the average 
cross-validation (CV) error is within one standard error of the minimum 
CV error). We compute the gap/residuals of the LASSO model between 
predicted biological age and chronological age (i.e., the L-GAGE score). 
Our goal is to use L-GAGE to test for increased biological age in MDD 
participants (Fig. 2).

For the replication microarray dataset, we retrain the gene-age 
regression coefficients for the top L-GAGE genes because we could not 
match two of the gene symbols that are part of the multivariate L-GAGE 
model from the RNA-Seq data. We use Ridge rather than LASSO because 
we first perform feature selection in the discovery data and LASSO may 
force too many genes to zero. We test Ridge residual (R-GAGE) for as
sociation with MDD in the microarray data.

2.3. Relationship between gene age gap, chronological age, MDD and sex

It is important to consider adjustments for chronological age in 
biological age models because of regression to the mean as discussed for 
brain age models (Le et al., 2018), but sex is also an important covariate 
for MDD. To further explore covariate effects, we add MDD x Age and 
MDD x Sex interactions for L-GAGE associations with MDD. We use the 
OLS model 

LGAGE = β0 + β1MDD + β2Z+ β3(MDD ∗ Z)+ ε, (1) 

where Z represents the adjustment or interaction variable (Age or Sex). 
We focus on the effect of β3, which represents how much the average L- 

GAGE of the MDD group changes for the Z = 1 condition.
We consider two cases when age is used as a covariate with in

teractions (Z in Eq. 1): as continuous and as dichotomous with a 
threshold. To verify our choice of age threshold, we use a threshold 
regression model in the “chngpt” package in R (Fong et al., 2017). We 
use this approach to check for possible nonlinear relationship between 
MDD and age and whether the effect of chronological age on MDD in
creases at some threshold point. The mean function of the threshold 
model is: 

η = α1 + α2z+ β1I(x > e), (2) 

where x stands for chronological age, e is the age threshold and z are 
additional predictors. “I” is a step indicator function. The threshold is 
optimized using the exact criterion function with a logistic-based 
smooth function.

2.4. Feature selection, gene-age pathway enrichment, and interpretable 
classifier

We use LASSO to create the gene-based residual age model, L-GAGE, 
but LASSO feature selection also results in a set of age-related genes. As a 
secondary analysis, we use LASSO and other feature selection methods 
to identify important age-related genes for pathway enrichment to un
derstand the biological mechanisms of the age models. We use univar
iate linear regression, random forest (RF) regression, and nearest- 
neighbor projected distance regression (NPDR) (Le et al., 2020) as 
feature selection methods. RF has the ability to find more complex 
models than LASSO and linear regression, but RF has limited ability to 
detect interactions (McKinney et al., 2009), whereas NPDR has the 
ability to detect interaction effects (Le et al., 2020). For univariate 
feature selection, we use a linear model of individual genes with age, 
and we use a P-value threshold of 0.05 (uncorrected for improved 
pathway overlap). We use the standard NPDR with an adjusted P-value 
threshold of 0.05 FDR, and we use the LASSO penalized NPDR. For 
NPDR, we use the imbalanced k-nearest-neighbor value (k = 47) that 
approximates the 0.5 standard deviation of the hyper-radius (Le et al., 

Fig. 2. Scatter plot with regression line of biological age and chronological age: Biological age model is based on LASSO regression and the residual is later used for 
LASSO Gene Age Gap Estimate (L-GAGE). The points are colored by MDD (blue) and HC (red). The points are shaped by Female (circle) and Male (triangle). 
Spearman Correlation Coefficient (SCC = 0.77, slope P-value < 0.01).
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2020). We use permutation variable importance with RF. We use the 
Reactome Pathway database in MSigDB (Subramanian et al., 2005) for 
biological pathway enrichment of age related genes.

For additional interpretation of the gene-age prediction of MDD 
along with consideration for other covariates, we train a decision tree to 
predict MDD based on L-GAGE, chronological age, and sex. Decision 
trees have high variance, but they are useful for interpreting the re
lationships between covariates.

Fig. 3. Density plots of the LASSO based Gene Age Gap Estimate (L-GAGE) separated by MDD (A) and sex (B). A positive gene-age residual (x-axis) indicates a sample 
above the gene age regression line and negative below. A. Biological age relative to chronological age (L-GAGE) is greater in MDD participants than in HC. B. The L- 
GAGE difference between males and females is less pronounced.

Table 1 
LASSO Gene-age-gap estimate (L-GAGE) association with MDD and dichoto
mized age interaction.

A
​ Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1225 0.3495 0.35 0.7265
MDD − 0.1286 0.5203 − 0.247 0.8052
Age40 − 1.606 0.7535 − 2.131 0.0347*
MDD*Age40 2.2764 0.9984 2.28 0.024*
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
B
​ Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2644 0.4172 0.634 0.5273
MDD − 0.1870 0.5296 − 0.353 0.7246
SexMale − 0.2838 0.4534 − 0.626 0.5324
Age40 − 1.6144 0.7551 − 2.138 0.0341*
MDD*Age40 2.3274 1.0038 2.319 0.0217*
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note. A. Based on the ordinary least squares model (Eq. 1 with Z = Age), where 
chronological age is dichotomized with threshold is Age> =40 and Age< 40, the 
MDD x Age interaction is significant. Biological age (L-GAGE)) is similar for 
MDD and HC when Age< 40, but when the chronological age is higher than 40, 
biological age is significantly greater in MDD individuals than HC. B. The MDD x 
Age interaction remains significant when Sex is added as a covariate.

Fig. 4. MDD x Age interaction for L-GAGE with age 40 threshold. A. The average L-GAGE for people older than 40 with MDD is higher than the L-GAGE value for 
people younger than 40 with MDD (blue line), whereas in the HC group the average L-GAGE is lower for people older than 40 than for people younger than 40 (red 
line). B. For individuals younger than 40, L-GAGE shows very little difference between MDD and HC. For older individuals, there is greater biological aging (L-GAGE) 
for the MDD versus HC group. The L-GAGE association with MDD is still significant when adjusted by age and sex.

Table 2 
Gene-age-gap regression with MDD-sex interaction with Female and Male.

Estimate Std. Error t value Pr(>|t|)

(Intercept) − 0.24481 0.44221 − 0.554 0.581
MDD 0.64637 0.5907 1.094 0.276
Male 0.04395 0.62938 0.07 0.944
MDD* Male − 0.55121 0.91608 − 0.602 0.548
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note. Based on the ordinary least squares model (Eq. 1 with Z = Male/Female 
instead of age), L-GAGE score of MDD in males is slightly lower than the L-GAGE 
score of MDD in females, but the interaction term MDD*Male is not statistically 
significant.
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3. Results and discussion

3.1. Association testing of gene age L-GAGE with MDD

We test for association of the LASSO Gene Age Gap Estimate (L- 
GAGE) score with MDD status. L-GAGE is the residual from a LASSO 
gene expression model of chronological age. The LASSO model uses the 
cross-validation tuned lambda-1se value (λ = 1.636048), which is the 
largest λ at which the mean-squared error (MSE) is within one standard 
error of the minimum MSE. The residuals are constant, and 

Fig. 5. Effect of Chronological Age on MDD Determined by Threshold 
Regression Model. A. Threshold regression (Eq. 2) shows the nonlinear rela
tionship between MDD and chronological age. The prediction indicates an in
crease in MDD up to the age of 39, which is identified as the change point by the 
model. B. The likelihood analysis of the threshold regression model also in
dicates that age 39 is the optimal threshold, having the highest 
model likelihood.

Fig. 6. Gene age decision tree for MDD with covariates. For added interpretation, we train a decision tree on all samples to predict MDD. The model identifies the 
gene age residual L-GAGE as the most important predictor, with chronological age being the second most significant factor. In the first split, if the gene age gap is low, 
L-GAGE < -2.251 (Node 1), there is high probability for a subject to be HC (Node 2). If the gene age gap is higher, L-GAGE ≥ -2.251, the model becomes more 
complex and initially depends on chronological age with split 39.5 years (Node 3). If L-GAGE is high and Age ≥ 39.5, then there is a high probability a subject is MDD 
(Node 15). When Age < 39.5, the model again becomes dependent on L-GAGE, and at a certain split, females exhibit a higher probability of MDD compared to males 
(Nodes 8 and 9).

Table 3 
Age associated genes selected by LASSO.

Down Regulated with Increasing Age Up Regulated with Increasing Age

Gene Coefficient Gene Coefficient

NAA20 − 6.7070152 CCNE1 14.2689027
ZNF347 − 2.9514771 SESTD1 8.8624231
PRMT6 − 2.4559818 ZNF334 2.4209761
WDR13 − 1.7979357 ANTXRL 2.0255277
DDX19B − 1.3737037 DTD2 1.8502139
TAF9 − 1.2672137 CYTH3 1.5349361
ADSS − 1.1724134 DYRK1A 1.2905045
TGFBR3 − 1.0316785 HTATSF1 1.078388
SMYD5 − 0.8454683 SFXN4 0.7870119
CISD1 − 0.6212633 UBE2F-SCLY 0.2252943
TGIF2-C20orf24 − 0.5057642 ​

Note. Multivariate coefficients are shown that survived LASSO penalty. Negative 
coefficients (left columns) indicate higher expression of the gene tends to occur 
with younger age. Positive coefficients (right columns) indicate higher expres
sion of the gene tends to occur in older individuals. These genes are used in the 
gene age model and the L-GAGE residual.
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heteroscedasticity is not present based on the Non-constant Variance 
Score Test. The penalty results in a multivariate linear model of age with 
22 genes and a Spearman Correlation Coefficient (SCC) with chrono
logical age of 0.77 (Fig. 2). Counting the number of HC or MDD above or 
below the regression line (Fig. 2), we find that the biological age is 
greater in MDD participants than HC (HC – 45 (56.96 %) below, 34 
(43.037 %) above, MDD 35 (44.87 %) below, 43 (55.128 %) above). 
The P-value of the Chi-squared test of GAGE sign (above or below the 
line) for MDD is not significant (0.1753). The greater L-GAGE in MDD 
versus HC can be seen in L-GAGE density (Fig. 3A). The L-GAGE dis
tribution for males and females is very similar (Fig. 3B). While L-GAGE is 
greater in MDD than HC participants, we do not find a statistically sig
nificant replication of the effect found in Ref. (Cole et al., 2021). How
ever, we do see a comparable effect size to what was previously found. 
Using the same genes as their model also did not yield a statistically 
significant MDD association.

3.2. Testing MDD-Age interaction for L-GAGE association model

We test for the effect of L-GAGE on MDD by introducing an MDD-Age 
interaction term (Eq. 1). Dichotomizing age at threshold 40, MDD alone 
is not significant, but we find a statistically significant effect of the 
interaction between MDD and Age 40 on L-GAGE (Table 1 and Fig. 4). 
For individuals younger than 40, L-GAGE shows very little difference 
between MDD and HC, but for older individuals, there is greater bio
logical aging (L-GAGE) for the MDD versus HC group (Table 1 and 
Fig. 4). Age alone is also statistically significant (Table 1). These age 
effects remain significant when we add sex as a covariate (Table 1B), but 
sex is not significant (Table 1B and Table 2).

The MDD-Age interaction and the MDD term (Eq. 1) do not have a 
significant effect on L-GAGE when age is treated as a continuous variable 
(MDD P-value = 0.364, Age P-value = 0.316, MDD*Age P-value =
0.197). Also, there is no direct statistical association between MDD and 
age and between MDD and sex (Two Sample T-test of MDD and Chro
nological age: P-value = 0.167; Chi-squared-test of MDD and sex: P- 
value = 0.08716). To further support our choice of age threshold, we use 

a threshold regression (Eq. 2). The change point for age in relation to 
MDD is estimated to be 39 years (Fig. 5). Combined with the third 
quartile being age 41, the threshold regression suggests that age 40 is a 
suitable cutoff point for dividing the participants into two age groups.

Additional support for the age= 40 threshold can be seen in the 
decision tree for predicting MDD (Fig. 6), where age with threshold 39.5 
is the second important split variable, following L-GAGE. The decision 
tree also suggests interaction effects, where the effect of L-GAGE on 
MDD is conditioned on chronological age. If L-GAGE (node 1, Fig. 6) is 
below a threshold, participants tend to be HC. If the L-GAGE is below the 
threshold and chronological age is above 39.5 (i.e., an interaction), 
participants tend to be MDD. However, for chronological age less than 
39.5. (node 3, Fig. 6), the prediction of MDD is considerably more 
complex. We note that this decision tree was trained on the full dataset 
to maximize power, but it is instructional for interpretation.

3.3. Characterizing age-associated genes

The LASSO regression used in L-GAGE selected 21 age genes with 
non-zero coefficients (Tables 3 and 4). In order to perform pathway 
enrichment for age related genes, we expand the number of genes and 
feature selection methods to include linear regression, RF, and nearest- 
neighbor projected distance regression (NDPR) (Le et al., 2020). Using 
the Reactome database, we find enrichment for Infectious Disease, 
Adaptive Immune System, and SARS-CoV-2 Infection pathways for top 
genes with P-value< 0.05 from linear regression (Table 5) and NPDR 
(Table 6). SARS-CoV-2 can cause neurological complications, and a 
recent study showed that differentially expressed genes for COVID 
infection overlap with many gene associations for neuropsychiatric 
disorders including depression (Quincozes-Santos et al., 2021). We also 
found across all feature selection methods (including LASSO), the four 
common age genes are NAA20 (N-alpha-acetyltransferase 20), CCNE1 
(Cyclin E1), and SESTD1 (SET domain containing protein 1A), and TAF9 
(TATA-box-binding protein associated factor 9). These genes will be 
discussed further.

Table 4 
Age associated genes selected by linear regression with adjusted P-value 0.05 FDR.

Down Regulated with Increasing Age Up Regulated with Increasing Age

Gene Coefficient P-value Adjusted P-value Gene Coefficient P-value Adjusted P-value

NAA20 − 16.1918 8.86E− 08 0.0005 CCNE1 42.8022 5.59E− 07 0.0013
CIART − 22.7969 6.87E− 07 0.0013 SESTD1 12.2045 1.19E− 05 0.0111
TAF9 − 21.2804 2.85E− 06 0.0040 ITGB1BP1 10.7847 2.46E− 05 0.0197
MLXIPL − 20.0949 4.55E− 06 0.0051 ANTXRL 13.8739 4.23E− 05 0.0295
TGFBR3 − 17.7019 7.91E− 05 0.0491 ​ ​ ​ ​

Note. Negative coefficients (left columns) indicate higher expression of the gene tends to occur with younger age. Positive coefficients (right columns) indicate that 
higher expression of the gene tends to occur in older individuals. These genes are shown for comparison but not used in the gene age model.

Table 5 
MSigDB Reactome results of the age genes selected by linear regression.

Gene Set Name Genes in Gene Set 
(K)

Description Genes in Overlap 
(k)

k/K p-value

REACTOME_RNA_POLYMERASE_II_TRANSCRIPTION 1393 RNA Polymerase II Transcription 46 0.0330 3.84E− 11
REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 1442 Post-translational protein 

modification
44 0.0305 1.21E− 09

REACTOME_METABOLISM_OF_RNA 714 Metabolism of RNA 29 0.0406 2.05E− 09
REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53 363 Transcriptional Regulation by TP53 20 0.0551 4.74E− 09
REACTOME_INFECTIOUS_DISEASE 1019 Infectious disease 33 0.0324 3.95E− 08
REACTOME_MEMBRANE_TRAFFICKING 629 Membrane Trafficking 23 0.0366 6.11E− 07
REACTOME_METABOLISM_OF_LIPIDS 742 Metabolism of lipids 25 0.0337 8.86E− 07
REACTOME_SUMOYLATION 187 SUMOylation 12 0.0642 1.19E− 06
REACTOME_SARS_COV_INFECTIONS 471 SARS-CoV Infections 19 0.0403 1.4E− 06
REACTOME_VESICLE_MEDIATED_TRANSPORT 724 Vesicle-mediated transport 23 0.0318 6.34E− 06

Note. We collect the 464 age associated genes with P-value lower than 0.05 (not adjusted for better pathway detection) and query MSigDB Reactome database for 
pathway enrichment. Notably, these age associated genes are enriched for infectious disease and SARS-CoV Infections pathways.
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3.4. Association test of L-GAGE in independent MDD study

To evaluate the generalizability of the 21 genes from the L-GAGE 
model, we train a Ridge regression model of age using a microarray 
study by (Leday et al., 2018). Out of the 21 genes in our L-GAGE model, 
19 were found in the microarray dataset by matching gene symbols 
(genes ANTXRL and UBE2F-SCLY were not present). Using the 19 genes 
in the microarray data with 64 MDD and 64 HC, the Ridge model of 
chronological age (lambda penalty 1.991) has SCC= 0.465 (Fig. 7). In 
the scatter plot of Ridge gene-age versus chronological age (Fig. 7) 41 
(23) MDD are above(below) the regression line and 23(41) HC are above 
(below) the regression line. The elevated Ridge Gene Age Gap Estimate 
(R-GAGE residual) in MDD compared to HC is statistically significant 
(Fig. 8, t-test P-value = 0.000186). Also note there is no association 
between MDD/HC and chronological age (t-test P-value=0.9756).

4. Conclusions

We presented a procedure for creating an expression-based biolog
ical age model using LASSO penalized regression, and we explored the 
association between the residual (the LASSO-based Gene Age Gap Esti
mate or L-GAGE) and MDD while adjusting for chronological age and 
sex. We found increased biological aging based on L-GAGE in MDD 
versus HC participants with an effect size similar to a previous study 
(Cole et al., 2021), but the difference was not statistically significant (see 
discussion below about replication). We found a statistically significant 
MDD-Age interaction for L-GAGE when age is dichotomized with 
threshold 40 years. We used multiple statistical criteria to verify this 
threshold based on the age distribution. Using a higher threshold results 
in a very sparse older group. The MDD-Age interaction could indicate an 
effect of lifetime number of MDD episodes on biological aging that is not 
detectable until middle-age. The interaction effect remained significant 
when adjusting for chronological age and sex, and we emphasize the 
importance of including age as a covariate in biological age association 
tests to avoid confounding due to regression to the mean (Le et al., 
2018).

We found evidence for the generalizability of the L-GAGE model by 
testing the 21 LASSO-selected genes for elevated gene age in an inde
pendent microarray gene expression dataset (recall the discovery data 
used RNA-Seq). We found a similar but lower correlation between the 
gene age model predictions and chronological age in the replication 
data, and we found a statistically significant elevation of the gene age 
gap in MDD compared to HC. We retrained the model coefficients in the 
replication data, which was necessary because only 19 of the 21 genes 
could be reliably mapped to microarray probes. In addition, distribution 
differences between gene expression platforms change the scale of the 
original regression coefficients. The age model saw a decrease in SCC 
from 0.77 in the discovery data to 0.46 in the replication data, which 
could be due to multiple factors, including that the SCC of the original 
gene age model could be inflated. Another factor is the difference in age 
distributions in the two datasets, with the discovery set skewing younger 
and the replication set skewing older. An interesting future work would 
be to integrate these data and other cohorts to get a broader age range 
for modeling. This could result in a gene age model that is generalizable 
to more ages and could reveal nonlinearities in the gene age model.

We found a statistically significant elevation of gene age in MDD 
participants in the replication data, which is an indicator that these 
models can be used to understand psychiatric disorders. A potential 
limitation of the analysis is the use of the same samples to train the gene 
age model that were used to test the gene age gap hypothesis in MDD. It 
would be preferrable to use independent samples for the age model and 
MDD testing. However, for hypothesis testing, we used a different var
iable than age (i.e., MDD), and MDD is not associated with age in the 
data, which should mitigate potential bias. In future gene age studies, we 
recommend larger and independent samples for estimating gene age 
models.Ta
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We note a few of the top age-associated genes, such as CCNE1, 
NAA20, SESTD1, and TAF9, that have been associated with aging, 
senescence, and infectious disease. In a study of Lung Adenocarcinoma, 
CCNE1 gene expression was found to be correlated with patients’ age 
(Ullah et al., 2022), and NAA20 and SETD1A are involved in senescence, 
which is related to aging and age-related diseases. It was shown that 
depletion of NAA20 in non-transformed mammal cells led to senescence 
(Elurbide et al., 2023), and in another study knockdown of SETD1A 
triggered cellular senescence. (Tajima et al., 2019). TAF9 

cross-reactivity was shown to be associated with immunity to CMV 
(human cytomegalovirus) in the context of autoimmune disease (Chen 
et al., 2021).

Pathway enrichment of a larger set of age genes, beyond the 21 L- 
GAGE genes, resulted in the detection of Infectious Disease, Adaptive 
Immunity, and SARS-CoV Infection pathways. As noted in (Cole et al., 
2021), evaluating PBMC transcription can increase the risk for false 
positive immune pathways. Future work will involve pathway analysis 
based on other biological specimens and testing of the gene age model 
for MDD in RNA-seq data from postmortem brain areas. For example, 
the Stanley Medical Research Institute data includes frontal and cingu
late cortex and hippocampus as well as several subcortical areas. Brain 
region-specific gene age effects on MDD could provide valuable insights 
into the etiology of MDD.

This study contributes a new approach to estimating biological aging 
and contributes to the evidence for the role of aging and inflammation in 
depression. Future studies are needed with broader age ranges, more 
uniform age distributions, larger sample sizes, independent populations 
for age modeling, and utilization of MDD age-of-onset and number of 
depressive episodes. Future gene age models may help identify in
dividuals that need different treatment or management for depression 
due to an increase in their relative biological age.

Research data for this article

Data and code for this research are available at https://github.com/ 
insilico/GeneAgeMDD.

Verification

We confirm that this work is performed in accord with ethical 
standards, is original, and has not been published elsewhere nor is it 
currently under consideration for publication elsewhere. This manu
script has been read and approved by all co-authors. The authors have 
no conflicts of interest to report.

Fig. 7. Gene age versus chronological age in replication microarray data (GSE98793). Gene age regression line (blue line, Spearman correlation coefficient (SCC) 
= 0.46, P-value < 0.01) is based on Ridge regression in the replication microarray data using only the 19 genes from the original L-GAGE model (21 genes less 2 
missing). The points are colored by MDD (blue) and HC (red) and shaped by Female (circle) and Male (triangle). For MDD, 41(23) are above(below) the regression 
line and for HC, 23(41)are above(below) the regression line. The Ridge Gene Age Gap Estimate (R-GAGE) is higher for MDD than HC participants (see Fig. 8, t-test P- 
value = 0.0001856).

Fig. 8. Density plot of the Ridge based Gene Age Gap Estimate (R-GAGE) in 
replication microarray data (GSE98793). The Ridge age model (Fig. 7) is 
trained on the replication microarray data using 19 of 21 genes from the 
original L-GAGE model. A positive R-GAGE residual (x-axis) indicates a sample 
above the gene age regression line and negative below (Fig. 7). Biological age 
relative to chronological age (R-GAGE) is higher in MDD (blue) participants 
than in HC (red) (T-test P-value = 0.0001856).

Y.(J. Li et al.                                                                                                                                                                                                                                    Neurobiology of Aging 151 (2025) 13–21 

20 



Funding

BAM and JS received support from the National Institute of Mental 
Health (R01MH098099).

CRediT authorship contribution statement

Kresock Elizabeth: Investigation. McKinney Brett: Writing – re
view & editing, Supervision, Methodology, Conceptualization. Li 
Jamie: Writing – original draft, Software, Methodology, Investigation, 
Formal analysis. Kuplicki Rayus: Investigation. Ford Bart: Writing – 
review & editing. Figueroa-Hall Leandre: Writing – review & editing. 
Savitz Jonathan: Writing – review & editing.

References

Ait Tayeb, A.E.K., Poinsignon, V., Chappell, K., Bouligand, J., Becquemont, L., 
Verstuyft, C., 2023. Major depressive disorder and oxidative stress: a review of 
peripheral and genetic biomarkers according to clinical characteristics and disease 
stages. Antioxidants 12 (4), 942. https://doi.org/10.3390/antiox12040942.

Chen, Y.F., Hsieh, A.H., Wang, L.C., Yu, K.H., Kuo, C.F., 2021. Cytomegalovirus- 
associated autoantibody against TAF9 protein in patients with systemic lupus 
erythematosus. J. Clin. Med 10 (16). https://doi.org/10.3390/jcm10163722.

Cole, J.J., McColl, A., Shaw, R., Lynall, M.E., Cowen, P.J., de Boer, P., Drevets, W.C., 
Harrison, N., Pariante, C., Pointon, L., Consortium, N., Goodyear, C., Bullmore, E., 
Cavanagh, J., 2021. No evidence for differential gene expression in major depressive 
disorder PBMCs, but robust evidence of elevated biological ageing. Transl. 
Psychiatry 11 (1), 404. https://doi.org/10.1038/s41398-021-01506-4.
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